B.A./B.Sc. Ist Semester

MATHEMATICS

Paper—II (Calculus & Trignometry)

Time Allowed—3 Hours]

[Maximum Marks—50

Note: — Attempt FIVE questions in all, selecting at least TWO questions from each Section.

SECTION—A

- 1. (a) Between any two distinct real numbers, there is always an irrational number and therefore, infinitely many irrational numbers. Prove or disprove.
 - (b) Prove that

$$|x + 1| < 2 \text{ iff } \frac{2x - 1}{3x + 2} \in (-\infty, -\frac{1}{5}) \cup (1, \infty) - \left\{-\frac{2}{3}\right\}.$$

5,5

2. (a) Prove that $Lt_{x\to a} \frac{1}{x-a}$ does not exist.

(b) Let
$$f(x) = \begin{cases} 1 ; & x \le 3 \\ ax + b ; & 3 < x < 5 \\ 7 ; & 5 \le x \end{cases}$$

Determine the constants a and b so that f may be continuous for all x.

5,5

40(2117)/BSS-22597

1

(Contd.)

- 3. (a) Differentiate tan⁻¹ (sech x²) w.r.t. x².
 - (b) If $y = e^m \sin^{-1} x$, then $(1 + x^2)y_2 xy_1 = m^2y$.
 - (c) If $y = (x + \sqrt{1 + x^2})^m$, find, $y_n(0)$.
- 4 (a) State and prove Taylor's Theorem (with Cauchy's Form of Remainder).
 - (b) If $f(x) = (1-x)^{\frac{5}{2}}$ and $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(\theta X)$; $0 < \theta < 1$, find the value of θ as x tends to 1.
- 5. (a) Evaluate $Lt_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.
 - (b) Show that $f(x) = \frac{1}{x^2}$ is continuous on (0, 1], but it is not uniformly continuous on (0, 1]. Is 'f' uniformly continuous on [a, 1], if a > 0? 5,5

SECTION-B

- If α , β be roots of $t^2 2t + 2 = 0$ then prove that (a) $\frac{(x+\alpha)^n-(x+\beta)^n}{\alpha-\beta}=\frac{\sin n\varphi}{\sin^n\varphi}.$
 - Prove that n, nth roots of unity form a G.P. Also show that their sum is zero and product is equal to $(-1)^{n-1}$. 5,5

40(2117)/BSS-22597

2

(Contd.)

a2zpapers.com

7. (a) Prove that:

(a)

10. (a)

$$[\sin(\alpha - \theta) + e^{\pm i\alpha} \sin\theta]^n = \sin^{n-1}\alpha[\sin(\alpha - n\theta) + e^{\pm i\alpha} \sin\theta]$$

(b) Prove that:

$$i^{i} = \cos\theta + i\sin\theta$$
, where $\theta = (4m+1)\frac{\pi}{2}e^{-(4n+1)\frac{\pi}{2}}$; m, n \in Z

8. (a) If $\tan \frac{x}{2} = \tanh \frac{x}{2}$, prove that $\cos x \cos h x = 1$.

(b) If
$$\sin (u + iv) = x + iy$$
, prove that:

(i)
$$\frac{x^2}{\cosh^2 v} + \frac{y^2}{\sinh^2 v} = 1$$

 $tan^{-1}(x + iy)$

(ii)
$$\frac{x^2}{\sin^2 u} - \frac{y^2}{\cos^2 u} = 1$$
Separate into real and imaginary parts:

5,5

5.5

(b) Sum to n terms the series: $\cos \alpha + \cos 2\alpha + \cos 3\alpha + \cdots$ n terms.

Deduce the sum
$$1^2 + 2^2 + 3^2 + ... + n^2$$
.
Sum to infinity the series :

$$\tan \alpha \tan(\alpha + \beta) + \tan(\alpha + \beta) \tan(\alpha + 2\beta) + \tan(\alpha + 2\beta) \tan(\alpha + 3\beta) + \dots \infty$$

(b) Prove that
$$Lt_{x\to 0} \frac{1}{x^2} log \left(\frac{tan^{-1} x}{x} \right) = -\frac{1}{3}$$
. 5,5
40(2117)/BSS-22597 3 9200

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjal